

AFRL-IF-RS-TR-2002-229
Final Technical Report
September 2002

SECURITY AGILITY FOR DYNAMIC EXECUTION
ENVIRONMENTS

Trusted Information Systems

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F267

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2002-229 has been reviewed and is approved for publication

APPROVED:
 ROBERT J. VAETH
 Project Engineer

 FOR THE DIRECTOR:
 WARREN H. DEBANY, Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
SEPTEMBER 2002

3. REPORT TYPE AND DATES COVERED
Final Jul 97 – Sep 00

4. TITLE AND SUBTITLE
SECURITY AGILITY FOR DYNAMIC EXECUTION ENVIRONMENTS

6. AUTHOR(S)
Tim Fraser, Mike Petkac, and Lee Badger

5. FUNDING NUMBERS
C - F30602-97-C-0225
PE - 62301E
PR - F267
TA - 71
WU - 02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Trusted Information Systems
NAI Labs, Network Associate
3060 Washington Road
Glenwood Maryland 21748

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Project Agency AFRL/IFGB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-229

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Robert J. Vaeth/IFGB/(315) 330-2182/ Robert.Vaeth@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The Security Agility for Dynamic Execution Environments project developed practical solutions to problems faced by
traditional applications in environments governed by dynamically reconfigurable security policies, In such environments,
applications that are unaware of the security policy's dynamic nature may crash or misbehave when confronted with
security policy changes that revoke their resources. They may fail to recover when subsequent security policy changes
restore their access to resources. They may fail to abort activities that are rendered illegal by security changes made
while the activities are already in progress. The project's primary result was the development of a software toolkit for
retrofitting existing dynamically linked applications with new "agile" mechanisms to avoid or compensate for these
failures. With the help of the software toolkit, existing UNIX applications can be retrofitted with new functionality that
allows them to operate effectively in new environments governed by dynamically reconfigurable security policies, even
in cases where the application's source code is not available.

15. NUMBER OF PAGES
19

14. SUBJECT TERMS
Dynamic Execution Environments, Security, Policy

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Contents

1. Summary ... 1
2. Introduction... 3
3. Methods, Assumptions, and Procedures ... 3

3.1. Phase One... 4
3.2. Phase Two .. 5
3.3. Phase Three .. 6

4. Results and Discussion ... 7
4.1. Classification of Failures due to Security Policy Change .. 7
4.2. Development of Agile Behaviors to Compensate for Failures 8
4.3. Abstraction of General Agile Behaviors in Toolkit Form.. 10
4.4. Emphasis on Application-specific Behavior Infrastructure ... 11
4.5. Interposition Enables Agility with Closed-source Applications 11
4.6. Integration with Intrusion Detection .. 11
4.7. Insight into the Security Agility Problem .. 12

5. Conclusions... 13
References... 15

1

1. Summary

The Security Agility for Dynamic Execution Environments project (hereafter referred to as the
Agility project) developed practical solutions to problems faced by traditional applications in
environments governed by dynamically reconfigurable security policies. Dynamic coalitions
require distributed systems that support dynamically reconfigurable security policies. Only
security policies that can be reconfigured during system runtime can address the complex events
that are common in these environments, such as shifts in alliances, changes in personnel,
intrusion alerts, and process migrations due to hardware losses.

Unfortunately, the act of dynamically reconfiguring the global security policy of a distributed
system may have undesirable side-effects: Applications that are unaware of the security policy's
dynamic nature may crash or misbehave when confronted with security policy changes that
revoke their resources. They may fail to recover when subsequent security policy changes
restore their access to resources. They may fail to abort activities that are rendered illegal by
security changes made while the activities are already in progress. To ensure correct system
operation, applications must be aware of the dynamic nature of the security policy that governs
their environment, and they must be able to adapt to security policy changes during runtime with
little or no manual assistance. Through the development of a series of increasingly sophisticated
software toolkits, the Agility project explored practical solutions to retrofit this awareness and
adaptation, or "agility", into existing applications.

The primary result of the Agility project was the final version of its software toolkit. However,
the development of the software toolkit brought several conceptual results to light, as well.
These conceptual results can be summarized as follows:

Applications use resources and services to perform useful work. In environments where a
security policy determines which resources and services are available for use, changes to this
security policy can affect an application's ability to perform useful work. The Agility project
showed that there are at least two broad classes of application failures due to security policy
change: first, applications may misbehave when resources they had previously acquired are
unexpectedly revoked by a security policy revision, and second, server applications that are
unaware that security policy changes may occur during their runtime may improperly
grandfather access rights, allowing their clients to illegally continue performing previously legal
operations that have been made illegal by a revised security policy.

By successfully implementing and demonstrating the effectiveness of its software toolkits in a
laboratory testbed, the Agility project provided experimental evidence that, once an existing
application is known to fail in response to particular kinds of security policy changes, it is
possible to compensate for or avoid these failures by augmenting the application with additional
functionality. Furthermore, the Agility project demonstrated that the same techniques used to

2

compensate or avoid these failures can also be used to add new application-level security policy
enforcement mechanisms.

In theory, there are at least five generic ways in which an application can positively respond to
an unexpected resource revocation. These responses include polling or blocking until a future
policy change cancels the revocation, proceeding despite the lack of resources, terminating, or
adapting to the new environment by attempting to find alternate resources. However, the Agility
project's initial toolkit development efforts showed that in practice, it is difficult to provide a
toolkit that implements all of these generic responses in a manner that suits all imaginable
applications in all imaginable situations. Nonetheless, the initial version of the software toolkit
suited a sufficient number of applications in a sufficient number of situations to have practical
value.

In an effort to address the failures of applications not satisfied by the initial software toolkit, later
versions of the software toolkit focused on providing a more general infrastructure to better
support solutions tailor-made to individual applications. The later software toolkits also used
interposition as a means of adding functionality to dynamically linked applications without
modifying their program text, and without access to their source code.

In retrospect, it seems clear that the problem investigated by the Agility project is not specific to
the realm of security research. Similar problems can be found in environments that do not
enforce security policies, but do admit untimely resource revocations (as in distributed
computing environments with unreliable communications) or unexpected errors that require the
abortion of in-progress processing (as in database management systems). It can be said that the
application failures witnessed and addressed by the Agility project were not caused by some
problematic aspect peculiar to systems that enforce complex security policies. Instead, the
failures were the natural result of running applications designed to operate in a traditional UNIX
environment in a new environment where many assumptions considered safe in a UNIX world
do not hold.

However, given the significant role traditional UNIX applications play in the infrastructure of
many modern distributed computing environments (and in the Internet in particular), there is
considerable practical value in the ability to run familiar tried-and-true UNIX applications in
new hardened environments with dynamically reconfigurable security policy enforcement
functionality. With its software toolkit, the Agility project shows that it is possible to adapt
applications designed to operate in a UNIX environment to operation in a new environment
governed by a dynamically reconfigurable security policy. Furthermore, since the software
toolkit enables retrofitting even in cases where the application's source code is not available,
there are cases where the effort required to retrofit an application using the software toolkit is
significantly less than the effort required to attempt a port or complete reimplementation.

3

2. Introduction

The Security Agility for Dynamic Execution Environments project developed practical solutions
to problems faced by traditional applications in environments governed by dynamically
reconfigurable security policies. Dynamic coalitions require distributed systems that support
dynamically reconfigurable security policies. Only security policies that can be reconfigured
during system runtime can address the complex events that are common in these environments,
such as shifts in alliances, changes in personnel, intrusion alerts, and process migrations due to
hardware losses.

Unfortunately, the act of dynamically reconfiguring the global security policy of a distributed
system may have undesirable side-effects: Applications that are unaware of the security policy's
dynamic nature may crash or misbehave when confronted with security policy changes that
revoke their resources. They may fail to recover when subsequent security policy changes
restore their access to resources. They may fail to abort activities that are rendered illegal by
security changes made while the activities are already in progress. To ensure correct system
operation, applications must be aware of the dynamic nature of the security policy that governs
their environment, and they must be able to adapt to security policy changes during runtime with
little or no manual assistance. The Security Agility for Dynamic Execution Environments
project developed solutions to enable this awareness and adaptation, or "agility" in applications.

The project's exploration of this problem was structured around the development of a freely
available practical software toolkit for engineering agility in applications. Development
occurred on platforms ranging from the BSD/OS 2.1 Domain and Type Enforcement prototype,
[1] to Windows NT, FreeBSD 3.2, and Linux 2.2.

This is the final report for the Security Agility for Dynamic Execution Environments project.
This report attempts to summarize its results in a concise manner. Three previous reports exist
which present the results of the project's three phases in much greater detail ([2], [3], and [4]).
This report is intended for researchers and administrators who wish to be informed of the
significant findings of the project without having to become aware of all of the implementation
details.

The remainder of this report is divided into three sections. First, Section 3 summarizes the
methods used to undertake the project. This is followed by Section 4, which summarizes its
results. Finally, Section 5 presents our conclusions.

3. Methods, Assumptions, and Procedures

The ultimate goal of the Security Agility project was to develop a practical and general solution
to the problems faced by applications constrained by dynamically configurable mandatory access
control policies, in the form of a software toolkit. Due to this focus on producing useful

4

software, the project's methodology emphasized the implementation, evaluation, and incremental
improvement of an increasingly sophisticated and general series of software prototypes. This
section summarizes the goals that motivated development during each of the project's three
intermediate phases and the methods and tools used to meet these goals.

3.1. Phase One

The primary goals of the first phase of the project were, first, to find and document examples of
application failures caused by runtime security policy changes, and second, to develop an initial
collection of software techniques to compensate for these failures. During Phase One, a
relatively large number of experimenters worked independently, in parallel, using the following
method to discover and develop remedies for application failures:

Each experimenter employed a commodity PC workstation running a new version of the
BSD/OS 2.1-based Domain and Type Enforcement prototype (hereafter called DTE) [1]. This
new version of DTE was enhanced by the experimenters to perform mediation on file descriptor
usage operations such as read and write. Older versions of DTE performed mediation only on file
descriptor creation operations, such as open. This additional mediation allowed the new version
of DTE to revoke resources in a manner more consistent with the Security Agility project's target
environment, Quorum.

Because of its BSD/OS base, DTE provided many applications critical to a distributed UNIX
environment, including remote login, auditing, FTP and HTTP services (to name a few). The
experimenters divided responsibility for the applications among themselves. Each experimenter
began by examining the source code of their critical applications, looking for evidence that they
might fail when faced with a security policy change. Each of the experimenters then
concentrated their efforts on whichever of their critical applications (or group of related critical
applications) they judged most likely to fail.

In addition to these critical applications, DTE provided a mechanism for enforcing mandatory
access control policies that could be dynamically reconfigured during runtime. This dynamically
reconfigurable enforcement mechanism provided an essential part of the dynamic security policy
environment that was targeted by the Security Agility project, allowing experimenters to conduct
their initial exploration via interaction with a real operating system rather than a simulation or a
formal model. This availability of a real operating system obviated much of the need for the
experimenters to make assumptions about how systems in the project's target environment might
operate.

Each experimenter proceeded by observing their chosen critical application running under a
variety of security policies. Experimenters used their knowledge of distributed UNIX
environments and DTE security policies to create security policy changes designed specifically
to cause failures in their chosen critical applications. Since many of the experimenters were

5

former DTE developers, their detailed understanding of DTE security policies made this ad-hoc
approach to discovering application failures effective.

Once they had discovered a security policy change that caused one or more failures of sufficient
severity to prevent their chosen application from providing useful service, each experimenter
proceeded to modify their application, implementing a solution to compensate for the failure.
Each experimenter was encouraged to implement their solution without regard for generality or
commonality between applications, in an effort to generate the most diverse range of solutions
possible. The experimenters accomplished all of their software development using the tools and
environment provided with the BSD/OS 2.1 system.

Once the experimenters had implemented their individual solutions, they worked together to
produce a combined demonstration of their software. In order to create a demonstration
environment that more closely resembled the Agility project's target environment, the
experimenters expended some effort into implementing application-level DTE-like policy
enforcement functionality for the Apache HTTP server. Quorum was envisioned by its designers
as a distributed system made up of heterogeneous nodes, some capable of enforcing mandatory
access control policies, and some not. Consequently, the demonstration environment included
both DTE and non-DTE BSD/OS nodes. By itself, the non-DTE BSD/OS node was of limited
use in a demonstration dependent on changes in security policy configuration. However, the
DTE-like functionality allowed the apache HTTP server on the non-DTE BSD/OS node to
enforce a dynamic mandatory access control policy. Using this functionality, the demonstration
could include HTTP client failures due to changes in the BSD/OS node's HTTP server's
mandatory access control policy, making the BSD/OS node a useful part of the demonstration.

Further details concerning the methods used to complete phase one of the project can be found in
the Security Agility for Dynamic Execution Environments Initial Prototype Evaluation Report
[2].

3.2. Phase Two

The primary goals of the second phase of the project were, first, to identify and model whatever
commonality existed among the application failures observed in the Phase One, and second, to
abstract the solutions implemented in phase one away from the specific details of their
applications, and integrate them into a general toolkit. Implicit in the first goal was the project's
hypothesis that there was some sort of common cause behind the application failures - some sort
of common architectural deficiency that made it difficult for applications to operate in
environments governed by dynamic security policies.

Because its goals were less exploratory and more analytical, the second phase proceeded with
fewer experimenters than the first. While some experimenters analyzed the failures and
solutions from phase one in hope of finding commonality, others undertook the engineering task
of separating the solutions from their applications, generalizing them, and integrating them into a

6

reusable toolkit. The toolkit took the form of several libraries implementing solution
functionality, coupled with a modified C library that allowed the solution functionality to be
added to an existing application.

In Phase Two, the experimenters also expended considerable effort in an attempt to move the
experiment from the BSD/OS DTE platform to the Windows NT platform in order to better suit
the needs of the customer. Since DTE functionality was not available in the Windows NT
operating system, the application-level DTE-like functionality developed in phase one for the
Apache HTTP server became the primary enforcer of mandatory access control policies on
Windows NT platform. In this effort, the experimenters made use of Windows NT version 4 and
Microsoft's Visual C++ environment and tools.

At the conclusion of Phase Two, the experimenters produced a demonstration of their integrated
toolkit based on both BSD/OS-DTE and Windows NT platforms. Further details concerning the
methods used to complete Phase Two of the project can be found in the Security Agility for
Dynamic Execution Environments Security Toolkit Evaluation Report [3].

3.3. Phase Three

Experience gained in the first two phases of the project influenced the goals in the third and final
phases, adjusting them somewhat from what was envisioned during the project's earliest days.
The primary goal of the third phase of the project was to enhance the second phase's toolkit for
use in a distributed environment. In addition, the unexpected emphasis on the Windows NT
platform in phase two introduced a new secondary goal: to enable the use of the toolkit on
applications for which no source was available. Because the project's planners assumed that this
phase would require only incremental improvement of the existing software toolkit, this phase of
the project proceeded with the smallest number of experimenters (at some points, only one).

Meeting the second goal (interoperability with closed-source applications) took the greatest
effort in Phase Two. After observing the success of other projects which used interposition
techniques to enhance existing closed-source programs [5], the experimenters decided to replace
their existing mechanism for adding toolkit functionality to applications (the modified libc) with
a new interposition-based mechanism. The experimenters implemented the new mechanism on
Windows NT first, since its dynamically linked COFF binary format provided good support for
interposition techniques.

Unfortunately, the aging BSD/OS-DTE platform did not support a proper dynamically linked
binary format. Consequently, the experimenters were forced to port their BSD/OS toolkit to the
closely related FreeBSD 3.2 platform before implementing a suitable interposition scheme using
FreeBSD's dynamically linked ELF binary format. The experimenters expended further porting
effort when the customer expressed a preference for the Linux platform. Fortunately, like
FreeBSD, Linux also supported the ELF binary format. The experimenters used the kernels and
tools included in the RedHat Linux 6.0 and 6.1 distributions to accomplish this task.

7

Further details concerning the methods used to complete phase three of the project can be found
in the Security Agility for Dynamic Execution Environments Distributed Security Toolkit
Evaluation Report [4].

4. Results and Discussion

This section summarizes the major results of the Security Agility for Dynamic Execution
Environments project. The main result of the project was the production of a general software
toolkit designed to address the problems faced by applications running in environments with
dynamically reconfigurable security policies. Secondary results included a classification of
policy-change-related application failure modes, a series of increasingly sophisticated
intermediate toolkit prototypes, insight into what kinds of functionality a toolkit should provide
(complete mechanisms vs. general infrastructure), and techniques for augmenting applications
with new mechanisms to enforce security policies. Each result is discussed below; specific
findings are described in offset paragraphs.

4.1. Classification of Failures due to Security Policy Change

Applications use resources and services to perform useful work. In environments where
a security policy determines which resources and services are available for use, changes
to this security policy can affect an application's ability to perform useful work.

This assertion was the genesis of the Security Agility for Dynamic Execution Environments
project (hereafter referred to as the "Agility project"). It was first expressed by the developers of
the Domain and Type Enforcement Firewalls project [6] who observed that critical infrastructure
applications sometimes failed during experiments that involved changing the security policy
during runtime.

The Agility project's first activity identified and documented many examples of these failures in
applications used to support distributed computing. Failures included a variety of improper
application behaviors, ranging from hangs and crashes (usually due to the revocation of
resources) to non-compliance with security policy revisions (usually due to improperly
grandfathered access rights). The most significant applications examined were accton, crond,
httpd (Apache), libc (those parts dealing with DNS), lpr/lpd, named, portmap, rlogin-gw (part of
the TIS Firewall Toolkit), rlogind, rshd, and syslogd. From this group, the experimenters chose
httpd, rlogin-gw, rlogind, rshd, and syslogd as the best representatives of the whole, and
demonstrated their runtime failures in the Phase One demonstration [2].

There are at least two broad classes of application failures due to security policy change:
first, applications may misbehave when resources they had previously acquired are
unexpectedly revoked by a security policy revision, and second, server applications that

8

are unaware that security policy changes may occur during their runtime may improperly
grandfather access rights, allowing their clients to illegally continue performing
previously legal operations that have been made illegal by a revised security policy.

On the BSD/OS-DTE prototype system, the syslogd application (the UNIX logging daemon) was
particularly vulnerable to security policy changes that revoked its access to its output files. The
syslogd application was capable of writing log messages to several output files - this capability
could be used to place different categories of log messages into different files. Experimenters
observed that once the syslogd application discovered that its ability to write log messages to a
given output file had been revoked by a security policy change, it would never write to that
output file again, even if a subsequent security policy change rescinded the revocation.

Furthermore, the combined system of the rlogin-gw firewall proxy and the rlogind and rshd
applications was unable to properly pause or terminate in-progress user login sessions when
security policy changes revoked the users' remote access rights. Once a valid user was
successfully authenticated, experimenters observed that the rlogin-gw firewall proxy, rlogind,
and rshd would allow the user's session to continue, even if the user was subsequently rendered
invalid by a mid-session security policy change.

A more detailed classification of failures related to security policy change can be found in
Section 2 of the Security Agility for Dynamic Execution Environments Initial Prototype
Evaluation Report [2]. In addition, further discussion of the phase one demonstration, including
the failure modes of rlogin-gw and syslogd, can be found in Section 3 of that document.

After a security policy change, the known security properties of formally verified
("trusted") applications might be insufficient to support the revised policy. (Conjecture.)

As discussed in Section 2 the Evaluation Report cited above, the formal verification of a given
"trusted" application may have relied on the application's operating environment to provide some
useful properties. For example, the application's original verifiers may not have bothered to
verify that the application cannot write to a given file, because they knew (assumed) that the
underlying system's security policy enforcement mechanism would prevent such writes. If the
security policy of the underlying system is revised to no longer prevent these writes, parts of the
application's formal argument may be invalidated. Although this argument seems logical, a lack
of formally verified applications prevented the Agility project from verifying it experimentally.
Consequently, it must be viewed as conjecture.

4.2. Development of Agile Behaviors to Compensate for Failures

Once an existing application is known to fail in response to particular kinds of security
policy changes, it is possible to compensate for or avoid these failures by augmenting the
application with additional functionality.

9

The task of augmenting an application with additional functionality to overcome failures caused
by security policy change was called "making the application agile" in Agility project jargon.
Making an application agile generally involved adding two kinds of functionality: 1)
functionality that made the application aware of the potential for security policy change and
allow it to detect changes; and 2) functionality to make the application react to policy changes in
a constructive manner. The Agility project demonstrated the effectiveness of this technique
experimentally by making several applications agile, including rlogin-gw, rlogind, rshd, and
syslogd.

For the Phase One demonstration, the experimenters added new functionality to the syslogd
application by directly modifying its source code. First, they added a mechanism that allowed a
policy management component external to the syslogd application to notify running instances of
syslogd via a software interrupt (signal) whenever policy changes occurred. Then, they added a
mechanism that enabled the syslogd application to react to these notifications by attempting to
reopen output files that it had lost due to previous revocations. In combination, these two new
mechanisms allowed syslogd to recover its full functionality after a temporary period without
access to some or all of its output files.

For the Phase One demonstration, experimenters also added new functionality to the combined
system of the rlogin-gw firewall proxy and the rlogind and rshd applications. As with the
syslogd application, the experimenters added a mechanism that allowed an external policy
management component to notify a rlogin-gw of a security policy change via a software
interrupt. They also added a mechanism that caused rlogin-gw to terminate any in-progress
session belonging to a user whose remote access rights had been revoked by a security policy
change. In the Phase Two demonstration, this mechanism could also be dynamically configured
to suspend, rather than terminate in-progress sessions.

The same techniques used to make applications agile can also be used to add new
application-level security policy enforcement mechanisms.

This result was important in the context of the Agility project for two reasons. First, the
solutions developed by the Agility project were intended for use in a heterogeneous distributed
computing environment similar to Quorum, in which application might migrate from place to
place over time. The experimenters imagined that some applications might depend on servers to
provide certain security guarantees by enforcing a particular security policy. They reasoned that
such an application might find itself migrated to a new location where the servers do not have
sufficient security policy enforcement mechanisms to provide the security guarantees it needs.
In these cases, the experimenters felt that it would be a valuable capability to be able to augment
the deficient servers at the new location with whatever additional security policy enforcement
mechanisms were required to support the migrated application.

Second, the ability to add new security policy enforcement mechanisms to servers made it
possible to experiment with changes in security policies enforced by server applications, rather
than operating systems. This capability allowed the experimenters to observe the effects of

10

security policy change on applications that ran solely on operating systems with minimal security
policy enforcement mechanisms (in comparison to DTE), such as Windows NT. For the Phase
One demonstration, the experimenters added a runtime reconfigurable DTE-based security
policy enforcement mechanism to the httpd (Apache) server application. For later
demonstrations, the experimenters demonstrated the applicability of the DTE-based security
policy enforcement to non-server applications, including chdir, cp, ls, su, and the tcsh and bash
shells.

4.3. Abstraction of General Agile Behaviors in Toolkit Form

In theory, there are at least five generic ways in which an application can positively
respond to an unexpected resource revocation. In practice, it is difficult to provide a
toolkit that implements all of these generic responses in a manner that suits all
imaginable applications in all imaginable situations. Nonetheless, such a toolkit can be
made to suit a sufficient number of applications in a sufficient number of situations to
have practical value.

The Agility project identified five generic ways in which an application can positively respond to
an unexpected resource revocation. Upon discovering that its access to a needed resource has
been revoked by a security policy change, an application may:

poll: Repeatedly test for renewed access to the revoked resource until the revocation is
rescinded.

suspend: Suspend processing (sleep) until the occurrence of some external event, such as
another security policy change, or an administrative signal to continue.

proceed: Proceed without accessing the revoked resource, possibly storing whatever data
is required to perform the accesses later on, once access to the revoked resource is
renewed.

terminate: Halt further processing.

adapt: Attempt to find an alternate resource that is accessible according to the revised
policy.

The experimenters implemented these generic responses in the Security Agility Toolkit. During
the course of this development, they observed that some of these behaviors were not applicable
to certain applications in certain situations:

poll/suspend: It may not be feasible for servers to sleep or wait for any length of time in
a polling loop. They may have to handle further requests from clients in a timely fashion,
and these requests may require the successful completion of all previous requests before
proceeding.

11

proceed: Proceeding may not be an option for applications whose subsequent processing
requires the application to first properly access the revoked resource.

terminate: Although termination is easily implemented, and prevents the application
from performing further bizarre behaviors, it also prevents the application from
performing any further useful work.

adapt: With applications not designed to handle the loss of resources, alternate resources
are not always available.

4.4. Emphasis on Application-specific Behavior Infrastructure

A toolkit that provides infrastructure to support the development of application-specific
agile behaviors can bring agile behaviors to applications not satisfied by the earlier
generic-behavior toolkit.

Once the difficulty of implementing universally applicable generic behaviors became clear, the
experimenters changed the focus of the improvements they made to succeeding versions of the
Security Agility Toolkit. Instead of attempting to provide a collection of complete, universally-
applicable generic behaviors, later versions of the toolkit focused on providing the infrastructure
required to support: 1) the creation of new agile mechanisms tailored to the needs of specific
applications; and 2) the integration of these new agile mechanisms with existing applications.

4.5. Interposition Enables Agility with Closed-source Applications

Interposition provides a means of adding functionality to dynamically linked applications
without modifying their program text, and without access to their source code.

The later versions of the Security Agility Toolkit used interposition at the library/linker interface
to integrate new mechanisms with existing applications. The new mechanisms themselves were
implemented as dynamically loadable shared libraries. The ability of the interposition technique
to enable the augmentation of existing applications without the use or modification of application
source code has been demonstrated by independent efforts [5]. This result was confirmed by the
final version of the Security Agility Toolkit. A detailed description of the final enhancements to
the toolkit can be found in Section 4 of the Distributed Security Agility Toolkit Evaluation
Report [4].

4.6. Integration with Intrusion Detection

Agile functionality would be useful in environments where intrusion detection systems
trigger security policy changes, particularly in cases where applications must activate
and deactivate supplementary security policy enforcement mechanisms as the overall
system's security posture changes. (Conjecture.)

12

As described above, the experiments completed during the Agility project show that the
functionality provided by the Security Agility Toolkit can: 1) help applications cope with the
adverse effects of security policy change; and 2) allow applications to activate and deactivate
their own supplementary security policy enforcement mechanisms during runtime. It seems
reasonable to claim that this functionality would be useful regardless of whether the security
policy changes were triggered administratively or automatically by an intrusion detection system
[7]. However, in all the experiments undertaken during the Agility project, the security policy
changes were always triggered manually by the experimenters, not automatically by an intrusion
detection system. Consequently, assertions about the effectiveness of the Security Agility Toolkit
when coupled with intrusion detection must be treated as conjecture.

4.7. Insight into the Security Agility Problem

The problem investigated by the Agility project is not specific to the realm of security
research. The problem is not peculiar to systems that enforce complex security policies.
Similar problems can be found in environments that do not enforce security policies.

The problem the Agility project investigated is an instance of the general problem of making
applications function properly in environments where access to resources may be intermittent
and the rules governing what operations are desirable at a given moment are not under the
complete control of the application performing those operations. Similar problems can be found
in databases and fault-tolerant systems.

Applications exist which are fault-tolerant by design. Even in traditional UNIX environments,
DNS lookup applications are capable of querying a list of alternate servers should their primary
server be rendered unreachable by circumstances beyond their control. Similarly, database
applications are capable of backing out of in-progress transactions when they find that
intermediate steps have unexpectedly failed. These applications demonstrate solutions to
instances of the same general problem addressed by the Agility project. Their solutions differ
from the ones explored in the Agility project only in that they are not specifically targeted at
failures caused by security policy changes.

The problem investigated by the Agility project is not a problem raised by the development of
Quorum-like systems as much as it is a problem raised by the use of UNIX applications in a new
environment for which they were not designed. The existence of working databases and fault-
tolerant applications suggests that, if the designers of the UNIX applications examined in the
Agility project were allowed to adjust their designs and implementations for (that is, port their
applications to) a Quorum-like environment, their applications would handle security policy
changes properly and would not require retrofitting.

Nevertheless, the toolkits and techniques developed by the Agility project have practical value
because they enable system-builders to retrofit and extend familiar existing UNIX applications
with less effort than would be required to port or reimplement them.

13

5. Conclusions

The Security Agility for Dynamic Execution Environments project (hereafter referred to as the
Agility project) was an investigation of the problems that occur when applications designed for
static execution environments (such as traditional UNIX) are run on systems where runtime
security policy reconfiguration may change an application's execution environment at any time.

Most applications designed to operate in a UNIX environment fall into this category. In
traditional UNIX environments, once an application acquires a local resource, its access to that
resource is generally never revoked. Furthermore, changes in user authorization policies made
while a user login session is in progress generally do not take effect until the user's next session.
Consequently, application designed to operate in a UNIX environment often do not include
functionality to cope with runtime changes in security policy, resource revocations, or resource
reinstatements. When faced with these unfamiliar events, these applications often fail.

The Agility project investigated the effects of running applications designed to operate in a
UNIX environment in a test environment similar to the one envisioned for Quorum. In this test
environment, a global mandatory security policy governs each application's access to resources.
Applications must expect revisions to this mandatory security policy during their runtime
revisions which revoke their access to previously acquired resources, reinstate their access to
previously revoked resources, or require them to modify their handling of requests already in
progress. The Agility project found that most application designed to operate in a UNIX
environment did not expect these revisions, and failed as a result.

In the test environment, the Agility project observed two broad classes of failures: 1) those
involving a failure to cope with the loss or reinstatement of a revoked resource; and 2) those
involving a failure to apply new security policy rules to service sessions already in progress. The
Agility project demonstrated that these failures could be avoided, or at least compensated for, by
retrofitting application with additional mechanisms, and that it was possible to construct software
toolkits to make this retrofitting easier. The Agility project produced a series of two toolkits: the
first provided a number of fully-implemented generic mechanisms intended to be suitable for all
applications; the second provided these generic mechanisms plus the general infrastructure
required to build new mechanisms tailored to specific applications. The second toolkit was also
designed to be fully effective on operating systems without support for DTE.

Both toolkits demonstrated practical value. The ready-made solutions provided by the first
toolkit provided quick fixes for the failures exhibited by many applications. However, not
unsurprisingly, the solutions were sufficiently generic to handle all imaginable applications in all
imaginable situations. This deficiency was addressed by the infrastructure for building
application-specific mechanisms provided by the second toolkit.

14

The results of the Agility project show that it is possible to adapt applications designed to operate
in a UNIX environment to operation in a Quorum-like environment. Furthermore, based on the
evidence of the applications we have retrofitted and demonstrated in our test environment, we
assert that the use of the Security Agility Toolkit makes adapting UNIX applications easier than
porting or reimplimenting them, at least for applications as complex as BSD/OS syslogd or
Apache httpd.

15

References

[1] L. Badger, D. Sterne, D. Sherman, and K. Walker. “A Domain and Type Enforcement UNIX

Prototype,” In USENIX Computing Systems Vol. 9, No. 1, Winter 1996.

[2] K. Oostendorp, T. Fraser, M. Petkac, J. Grillo, B. Uecker, and L. Badger. Security Agility for

Dynamic Execution Environments Initial Prototype Evaluation Report. Technical Report
0741, TIS Labs, June 1998.

[3] M. Petkac, E. Cantori, W. Morrison, L. Badger, Security Agility for Dynamic Execution

Environments Security Agility Toolkit Evaluation Report. Technical Report 0765, NAI Labs,
June 1999.

[4] M. Petkac and L. Badger, Security Agility for Dynamic Execution Environments Distributed

Security Agility Toolkit Evaluation Report. Technical Report 00-018, NAI Labs, September
2000.

[5] T. Fraser, L. Badger, and M. Feldman. “Hardening COTS Software with Generic Software

Wrappers.” In Proceedings of the 1999 IEEE Symposium of Security and Privacy, Oakland,
CA, May 1999, p. 2.

[6] Karen A. Oostendorp, Lee Badger, Christopher D. Vance, Wayne G. Morrison, Michael J.

Petkac, David L. Sherman, and Daniel F. Sterne. “Domain and Type Enforcement
Firewalls,” In Proceedings of the 13th Computer Security Applications Conference, San
Diego, California, December 1997.

[7] M. Petkac and L. Badger. “Security Agility in Response to Intrusion Detection”, To appear in

Proceedings of the 16th Annual Computer Security Applications Conference, New Orleans,
Louisiana, December 2000.

